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Abstract

Navigating animals continuously integrate sensory information to decide when to initiate
reorientation maneuvers. In Drosophila larvae, optogenetic activation of specific neural circuits
suppresses forward locomotion and triggers turning behavior. An analytic LNP model is presented
for predicting the timing of reorientation events under controlled LED stimulation. The model
represents the temporal response as a difference of two gamma probability density functions,
with a fast component at 71 = 0.29 s and a slower component at 7 = 3.81 s. The 6-parameter
kernel approximates a flexible 12-basis raised-cosine reference with R? = 0.968. Embedded in a
run/turn trajectory simulator, the kernel matches observed turn rates of 1.88 vs 1.84 turns/min.
The resulting timescale parameters distinguish fast sensory transduction from slow adaptation
dynamics.

1 Introduction

1.1 Larval Navigation and Optogenetic Control

Drosophila larvae navigate their environment using a characteristic locomotor pattern of forward
crawling (runs) punctuated by reorientation maneuvers (turns) during which the animal samples new
heading directions (Gershow et al., 2012; Gomez-Marin et al., 2011). Turn timing and direction are
not random but modulated by sensory input, enabling larvae to perform gradient-based navigation
(climbing and tracking) as well as phototaxis (Gershow et al., 2012; Kane et al., 2013).

Optogenetic tools provide precise temporal control over neural activity, allowing researchers to probe
how specific circuits influence behavioral decisions. In GMR61 larvae expressing channelrhodopsins,
LED illumination activates neurons that suppress forward locomotion and increase the probability
of reorientation events (Gepner et al., 2015). Understanding how turn probability evolves after
stimulus onset and offset is central to modeling sensorimotor integration.

1.2 LNP Regression and the Role of Temporal Kernels

Previous work has modeled larval turning probability using linear nonlinear Poisson (LNP) regression
models with temporal basis functions (Paninski, 2004; Pillow et al., 2008; Hernandez-Nunez et al.,
2015; Klein et al., 2015). LNP regression fits flexible temporal kernels to capture stimulus-response
dynamics. Raised-cosine bases (smooth, overlapping bump functions centered at different time lags)
with many parameters are common choices for the temporal kernel.

Flexible basis representations give good predictive performance but offer little interpretability. A
12-parameter raised-cosine kernel may fit the data well but does not directly reveal the relevant
timescales or separate the effects of sensory transduction and adaptation.
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Figure 1: Analytic LNP kernel decomposition. (A) Full kernel K, (t) as a blue solid line; red
shading marks suppression where Koy (t) < 0. Peak suppression of —3.06 log-hazard units at t* = 2.9
s corresponds to turn rate dropping to ~5% of baseline. (B) Component decomposition: fast
excitatory component (green; 71 = 0.29 s) captures rapid transduction; slow suppressive component
(red; 7o = 3.81 s) represents adaptation. Combined kernel (blue dashed) matches Panel A.

1.3 Contribution

An analytic temporal kernel addresses the interpretability gap for LNP regression models of
optogenetically-driven reorientation. The kernel is a difference of two gamma probability density
functions:

Kon(t) = A-T'(t;a1,81) — B -T'(t; a2, 2) (1)

where I'(t; o, f) denotes the gamma probability density function with shape a and scale 3.

The gamma-difference kernel captures a fast excitatory component peaking at 0.16 s with mean
71 = 0.29 s, representing rapid sensory transduction, alongside a slow suppressive component peaking
at 2.9 s with mean 79 = 3.81 s, representing synaptic or network adaptation.

The gamma-difference form arises naturally as the impulse response of cascaded first-order processes,
making parameters directly interpretable in terms of processing stages and time constants.

Validation against GMR61 data under 10 s peak / 20 s baseline LED stimulation supports kernel
accuracy. The analytic form matches both the 12-basis reference with R? = 0.968 and empirical
event rates with ratio = 0.97. The kernel also drives a trajectory simulator that recapitulates
observed behavior.

2 Methods

2.1 Experimental Data

Data were collected from GMR61 Drosophila larvae expressing channelrhodopsins. Animals were
tracked at 20 Hz on an agar substrate while receiving optogenetic LED stimulation in a square-wave
pattern: 10 s at peak intensity, 20 s at baseline intensity (30 s cycle). The present analysis includes
55 tracks containing 1,407 reorientation-onset events from 2 experimental sessions under the 0-to-250
PWM condition with constant 7 PWM blue LED background.



Throughout the paper, “stimulus onset” refers to the transition from baseline to peak LED intensity,
while “stimulus offset” refers to the transition from peak back to baseline. For the 0-to-250 PWM
condition, baseline intensity is 0 (LED off). For the 50-to-250 PWM condition used in factorial
analyses, baseline intensity is 50 PWM (~20% of maximum), representing reduced rather than absent
stimulation. Figure 2 shows the resulting peri-stimulus turn rate histograms for each experimental
condition.
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Figure 2: Condition-specific temporal dynamics and model validation. Panels A-D:
Peri-stimulus turn rate histograms for each experimental condition showing turn rate aligned to
LED onset at time = 0. Pink shaded region indicates the peak-intensity period from 0-10 s.
The 0-to-250 PWM conditions with Constant and Cycling backgrounds in panels A and B show
pronounced pre-stimulus peaks and strong post-onset suppression. The 50-t0-250 PWM conditions
in panels C and D show weaker modulation, consistent with partial adaptation to elevated baseline
intensity. Shaded bands indicate 95% confidence intervals. Panel E: Empirical peri-stimulus turn
rate with all four conditions overlaid showing condition-dependent suppression depth. Panel F:
Direct comparison of empirical PSTH and LNP model prediction. The model captures the temporal
dynamics of turn rate modulation including the initial transient peak at LED onset, deep suppression
during peak intensity from 1-4 s, and gradual recovery. Model parameters t1 = 0.29 s and t2 =
3.81 s.

Reorientation events were detected using a curvature-threshold algorithm that identifies the onset of
heading changes. The algorithm captures large sustained turns and brief head sweeps alike. Events
with measurable duration exceeding 0.1 s were classified as “true turns” (N = 319) for behavioral
interpretation.

Trajectories were segmented into five behavioral states using rule-based algorithms adapted from



Klein et al. (2015). Locomotion states include runs (forward motion with SpeedRunVel > 0) and
pauses (speed below 0.1 mm/s for > 0.5 s). Reorientation events include turns (heading changes
exceeding 30° within 1 s) and reorientations (turn onset frames for LNP modeling). Escape behaviors
comprise reverse crawls (backward motion with SpeedRunVel < 0 sustained for > 3 s). The five-state
segmentation enables extraction of duration statistics for each behavioral class (Supplementary
Figure S7).

Of 701 total tracks across 14 experiments, 79 (11.3%) spanned the full 20-minute experiment and
were used for individual variability analysis. Incomplete tracks were excluded to avoid right-censoring
bias. A t-test confirmed no significant difference in mean locomotor speed between complete and
incomplete tracks (p = 0.24), indicating the subset is representative. Population-level kernel
parameters were estimated from all tracks using pooled event data.

2.2 LNP Regression Model Structure

Reorientation timing is modeled using linear nonlinear Poisson (LNP) regression, which describes the
time-dependent probability that an event (here, a reorientation) occurs at time ¢. The instantaneous
rate is given by:

A(t) = €xp (BO + Utrack + Kon (tonset) + Koﬂ(toffset)) (2)

where:
o [p = —6.23: Calibrated global intercept (log-rate baseline)
o Utrack ~ N(0,02) with o = 0.47: Track-specific random effect capturing individual variability
o Kon(t): Stimulus-onset temporal kernel (response to LED intensity increase)
o Kog(t): Stimulus-offset temporal kernel (response to LED intensity decrease)

The model is fit as a negative-binomial GLM (NB-GLM) with logarithmic link, treating each video
frame (dt = 0.05 s) as a Bernoulli trial for event occurrence.

2.3 Stimulus-Onset Kernel: Gamma-Difference
The stimulus-onset kernel K, (t) is parameterized as a difference of two gamma probability density

functions (Equation 1), where:

toc—le—t/ﬂ

L(t;a,B) = “BoT(a)

(3)

is the gamma PDF with shape o and scale §.



Table 1: Fitted kernel parameters with 95% bootstrap confidence intervals.

Parameter Value 95% CI Interpretation
A 0.456 [0.409, 0.499] Fast component amplitude
aq 2.22 [1.93, 2.65] Fast shape (~2 stages)
b1 0.132 s [0.102, 0.168] Fast timescale
B 12.54  [12.43, 12.66] Slow component amplitude
Qg 4.38 [4.30, 4.46] Slow shape (~4 stages)
Ba 0.869 s [0.852, 0.890] Slow timescale
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Figure 3: LNP model validation against empirical data. The calibrated LNP model reproduces
features of larval reorientation behavior. (A) Model hazard rate showing event probability over time
relative to LED onset at time = 0. The model shows an initial excitatory peak followed by rapid
suppression within 0.5 s of LED activation, with yellow shaded region indicating peak-intensity
period from 0-10 s. The model captures both the ~2x reduction in event rate during stimulation
and the gradual recovery after LED offset at 10 s. (B) Suppression dynamics comparison. During
peak-intensity phase, both empirical and simulated data show ~50% reduction in turn probability
relative to baseline. Early suppression from 0-3 s and late suppression from 3-8 s are both captured
within 5% of empirical values. (C) Simulated peri-stimulus turn rate from LNP model predictions
across conditions. The model-predicted rates show condition-dependent suppression depth matching
the amplitude parameters fitted to each condition. (D) Gamma-difference kernels fitted separately
to each experimental condition. All four conditions share similar kernel shape with fast excitation
followed by slow suppression, but differ in amplitude. The 0-to-250 PWM conditions show deeper
suppression troughs than the 50-to-250 PWM conditions, consistent with the amplitude modulation
observed in suppression dynamics.



The fast component peaks at 0.16 s with mean 7 = 187 = 0.29 s, while the slow component peaks
at 2.94 s with mean 7o = a2 = 3.81 s.

2.4 Stimulus-Offset Kernel

A separate exponential kernel captures transient effects after LED intensity decreases:

Kog(t) = D - exp(—t/7os) (4)

with D = —0.114 and 7, = 2.0 s. The negative coefficient represents continued suppression during
recovery, with a half-life of 1.39 s.

2.5 Event Definition

The LNP model was fit to all 1,407 inclusive onset events, comprising salient reorientations (“true
turns”) as well as minor events such as head sweeps and curvature fluctuations.

For trajectory simulation and behavioral interpretation, events were filtered to those with
turn_duration > 0.1 s (N = 319, 23% of total). Fitting the LNP model to all events while focusing
behavioral output on filtered events follows standard practice in larval navigation modeling.

For the factorial extension (Section 3.4), 14 experiments comprising 7,867 events across 701 tracks
were pooled. Two experiments with anomalously high event counts (approximately 10-20x other
sessions) were excluded because their annotation statistics were inconsistent with the remaining
dataset.

2.6 Rate Calibration

The NB-GLM intercept (8y = —6.76) represents log-hazard per frame at 20 Hz. Discrete-time
simulation with the raw intercept produced ~60% of empirical events. A calibration factor was
applied:

Nem
<l — 3y 4 log (NP> = —6.76 + log(1.695) = —6.23 (5)

Global rate normalization preserves kernel dynamics (shape and timing) as well as relative condition
effects while matching empirical event rates. All factorial contrasts are independent of the calibration.

2.7 Trajectory Simulation

A run/turn state machine driven by the LNP model was implemented. During runs, the larva
moves forward at 1.0 mm/s with Brownian heading noise (o = 0.03 rad//s) and transition to a
turn is governed by the instantaneous hazard A(¢). During turns, heading angle is sampled from
N(u=7°,0=286°) with duration sampled from a lognormal distribution (median = 1.1 s). Speed
is reduced to 0.4x the run speed and the larva returns to running after the turn duration elapses.

The trajectory simulator uses the LNP model to drive run/turn transitions and reproduces event
rates and timing. Spatial statistics such as path shapes and arena occupancy were not systematically
validated. The simulator demonstrates hazard-driven timing rather than providing a fully calibrated
locomotion model.



Simulated Larval Trajectories
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Figure 4: Trajectory comparison: simulated vs empirical. (A) Spatial trajectories over
20 minutes showing runs punctuated by reorientation events. Blue segments indicate LED off
periods and orange segments indicate LED on periods. Red circles mark turn onsets scaled by angle
magnitude. The left two panels display LNP model simulations and the right panel displays an
empirical GMR61 larva track. (B) Cumulative turn counts over time with yellow shading during
LED on periods. Stochastic sampling produces individual track rates ranging from 6-13 turns/min
in simulations and 12.7 turns/min in the empirical track shown. Pooled rates across all 20-minute
tracks match closely at 10.98 turns/min for simulated data and 10.44 turns/min for empirical data.

2.8 Validation Metrics

Model performance was assessed through four metrics grouped by validation type: fit quality
metrics include kernel R? and PSTH correlation, while rate matching metrics include rate ratio and
suppression magnitude.

3 Results

3.1 Analytic Kernel Captures Temporal Structure

The 6-parameter gamma-difference kernel closely approximates the 12-parameter raised-cosine
reference (Figure 1A). The analytic form achieves R? = 0.968 and cross-validated R? = 0.961 (5-fold,
track-wise), demonstrating that the compact parameterization does not sacrifice predictive accuracy.

The kernel shows characteristic biphasic dynamics visible in Figure 1B, with an initial brief increase



in hazard from the fast component with m = 0.29 s followed by sustained suppression from the
slow component with 7o = 3.81 s. The fast component peaks at approximately 0.16 s post-stimulus,
consistent with the latency of channelrhodopsin activation and first-order neural responses. The
slow component dominates from 1-8 s, producing the characteristic suppression of reorientation
probability during peak-intensity periods. The fast onset followed by sustained suppression is
consistent with rapid sensory transduction giving way to slower synaptic adaptation.

The stimulus-offset kernel (not shown) shows modest continued suppression after the return to
baseline intensity, with a time constant of 2.0 s. The 2.0 s time constant indicates that return
to baseline behavior is gradual rather than instantaneous, likely reflecting recovery from synaptic
adaptation.

3.2 LNP Model Reproduces Event Rates

Simulation using the calibrated LNP model produces event counts closely matching empirical
observations (Table 2; Figure 3).

Table 2: Validation metrics comparing simulated and empirical data.

Metric Empirical Simulated Status
Total events 1,407 1,371 PASS
Rate ratio — 0.974 Target: 0.8-1.25

Baseline rate ~1.9/min ~ ~1.9/min ~ MATCH
Peak rate ~1.0/min  ~1.0/min ~ MATCH
Suppression  2.0x 1.9% MATCH

The peri-stimulus time histogram (PSTH) comparison reveals close agreement between model
predictions and empirical observations (Figure 3B). The correlation between simulated and empirical
event histograms is r = 0.84, indicating good capture of temporal dynamics around stimulus
transitions. The model correctly reproduces the temporal suppression profile from rapid onset
(within 0.5 s of LED activation; Figure 3A, yellow shaded region) through sustained ~2x reduction
during peak intensity to gradual recovery following LED offset.

The simulated turn rate comparison (Figure 3C-D) shows strong agreement between model predic-
tions and empirical observations. The hazard function achieves R? = 0.962, confirming that the
gamma-difference kernel captures the underlying temporal dynamics rather than merely matching
aggregate statistics.

3.3 Trajectory Simulation Matches Behavioral Statistics

The run/turn simulator driven by the LNP model produces realistic larval trajectories that recapit-
ulate features of empirical behavior (Figure 4; Figure 5). Key behavioral statistics match empirical
observations (Table 3).

Table 3: Trajectory simulation statistics.

Metric Simulated  Empirical Match
Turn rate 1.88/min 1.84/min 98%
Mean turn angle 7° 7° MATCH

Turn duration 1.1 smedian 1.1 s median MATCH
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Figure 5: Empirical turn angle and duration distributions. Parameters extracted from 319
filtered events with turn duration > 0.1 s used to parameterize the trajectory simulator. (A) Turn
angle distribution: heading changes show high variability with slight rightward bias. A von Mises
distribution shown as a red solid curve with k = 0.62 provides the best fit, while a normal distribution
shown as a green dashed curve with 4 = 7° and ¢ = 86° provides an adequate alternative fit. The
mean absolute turn angle is 69°, indicating substantial heading changes during reorientation. The
small positive bias may reflect asymmetry in the experimental setup or intrinsic larval handedness.
(B) Turn duration distribution: event durations follow a lognormal distribution shown as a red
curve with shape s = 0.59, scale = 1.29 s, and median = 1.1 s. Durations range from 0.1-6.8 s, with
most turns completing within 2 s. Gamma and exponential fits not shown provided poorer fits to
the right tail. The angle and duration distributions enable realistic stochastic simulation of turn
kinematics without assuming fixed values.

Simulated trajectories reproduce the characteristic run-and-turn locomotion pattern observed in
larvae (Figure 4A). During LED on periods, turn suppression extends run segments, matching the
empirical observation that optogenetic activation reduces reorientation frequency. The cumulative
turn counts in Figure 4B confirm that simulated and empirical rates converge over the 20-minute
observation window despite stochastic variability in individual tracks.

The turn angle distribution in Figure 5A shows high variability with ¢ = 86° and a slight rightward
bias of 4 = 7°, consistent with the exploratory nature of larval navigation. The turn duration
distribution in Figure 5B follows a lognormal form with median 1.1 s, matching empirically observed
turn durations. The turn angle and duration distributions were extracted from 319 filtered events
with duration > 0.1 s and used to parameterize the trajectory simulator.

3.4 Factorial Analysis of Intensity and Background Effects

To assess generalization beyond the reference condition, the model was extended to a 2 x 2
factorial design varying LED1 intensity (0-to-250 vs 50-to-250 PWM) and LED2 background pattern
(Constant 7 PWM vs Cycling 5-15 PWM). The factorial analysis pooled 14 experiments comprising
701 tracks and 7,867 events across all four conditions (Figure 6).

The factorial model extends the hazard function with condition-specific modulation:



log\(t)=po+Pr- I+ Pc-C+pPrc-IxC)+(a+ar-I+ac-C) - Kon(t)+v- Kog(t) (6)

where [ indicates the 50-to-250 intensity condition and C indicates the cycling background condition.

Table 4: Factorial model coefficient estimates with 95% confidence intervals. All effects are
statistically significant at p < 0.05.

Effect Coefficient 95% CI Hazard Interpretation
Ratio

Br (Intensity) —0.199 [—0.266, —0.132] 0.82x Lower baseline hazard
Bec (Cycling) —0.108 [—0.174, —0.042] 0.90% Lower baseline hazard
Brc (Interaction) —0.119 [—0.218, —0.019] — Synergistic reduction
a (Kernel amplitude)  1.005 [0.899,1.110] — Baseline suppression
oy (Intensity mod.)  —0.665 [—0.773, —0.557] — —66% suppression
ac (Cycling mod.) 0.152 [0.050, 0.254] — +15% suppression
~ (Rebound) 1.669 [0.470, 2.869] — Post-offset enhancement
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Figure 6: Factorial analysis of intensity and background effects. Extension of the LNP model
to a 2 x 2 factorial design with 14 experiments, 701 tracks, and 7,867 events reveals condition-specific
modulation of suppression amplitude. (A) Heatmap of suppression amplitude o + oy - I + a¢ - C
across the four experimental conditions. Values range from 0.34 for 50-t0-250 | Constant with
weakest suppression to 1.16 for 0-t0-250 | Cycling with strongest suppression, representing a 3.4-fold
range. Rows show background pattern with Constant 7 PWM vs Cycling 5-15 PWM; columns
show LED1 intensity step with 0-to-250 vs 50-to-250 PWM. Blue indicates weaker suppression;
red indicates stronger suppression. (B) Forest plot of factorial coefficient estimates with 95%
confidence intervals. All effects are statistically significant with p < 0.05, marked with asterisks.
Key findings: (1) Intensity modulation with oy = —0.665 indicates 66% weaker suppression for
the 50-t0-250 condition, consistent with partial adaptation to baseline illumination. (2) Cycling
background modulation with ac = +0.152 indicates 15% stronger suppression with oscillating
LED2, suggesting reduced adaptation. (3) The baseline effects with 8y = —0.199 and o = —0.108
show 18% and 10% reduction in overall hazard respectively. (4) A synergistic interaction with
Brc = —0.119 indicates greater-than-additive effects when both manipulations are combined. The
rebound coefficient v = 1.67 is positive, indicating enhanced event probability after LED offset.
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The factorial analysis reveals that both experimental manipulations significantly modulate the
optogenetic response (Table 4; Figure 6).

The 50-t0-250 condition shows 66% weaker suppression amplitude with a; = —0.665 and p < 0.001.
The 66% reduction in suppression amplitude is consistent with partial adaptation: larvae pre-
exposed to 50 PWM baseline illumination exhibit reduced sensitivity to the subsequent intensity
step, suggesting that the sensory pathway has already partially adapted to the ambient light level.

The cycling background with LED2 oscillating 5-15 PWM increases suppression amplitude by 15%
with ac = 0.152 and p = 0.004. The modest gain increase may reflect background-dependent
modulation of circuit excitability, possibly through reduced adaptation or temporal contrast effects.
The specific mechanism remains to be determined.

A modest interaction with ;o = —0.119 and p = 0.019 suggests slightly greater-than-additive
baseline reduction when both manipulations are combined. Given limited statistical power for
detecting small interactions (estimated ~30-40% power for the observed effect size), the interaction
is presented as exploratory and conclusions are not based on the finding.

The condition-specific suppression amplitudes in Figure 6A range from 0.34 for 50-t0-250 | Constant
with weakest suppression to 1.16 for 0-to-250 | Cycling with strongest suppression, representing a
3.4-fold range across conditions.

Per-condition kernel fits reveal that the fast timescale 71 varies 4-fold across conditions (0.26-1.18
s; Figure 7), while the slow timescale 75 remains stable (3.7-4.5 s). The stability of 79 alongside
variable 7 suggests that baseline illumination selectively modulates sensory transduction speed
without affecting adaptation dynamics.

Leave-one-experiment-out cross-validation yielded a mean rate ratio of 1.03 & 0.31 across 12 held-
out experiments (58% within the 0.8-1.25 target range), indicating reasonable but imperfect
generalization. The substantial inter-experiment variance (o = 0.31) suggests that individual session
effects remain a source of unexplained variation.

4 Discussion

4.1 Interpretability of the Gamma-Difference Kernel

The gamma-difference parameterization has a clear biological interpretation. The shape parameters
(a1 = 2, ag =~ 4) suggest two-stage and four-stage cascades of first-order processes for the fast and
slow components. Shape parameters of 2 and 4 are consistent with multi-stage signal transduction,
where rapid sensory processing involves photoreceptor activation with 2 stages while slow circuit
adaptation involves synaptic summation with 4 stages.

These timescales match known neurophysiological processes: the fast timescale (71 = 0.29 s)
corresponds to channelrhodopsin activation latency and first-order neural responses, while the slow
timescale (72 = 3.81 s) matches adaptation processes observed in sensory circuits.

4.2 Practical Utility

The analytic kernel supports direct parameter comparison across conditions and allows testing
whether experimental manipulations affect the fast or slow component. Simulations run directly
without requiring precomputed basis functions.
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Figure 7: Timescale variability across conditions. (A) Forest plot of fast timescale 71 showing
4-fold range from 0.26 s to 1.18 s. (B) Forest plot of slow timescale 7o showing relative stability at
3.7-4.5 s. (C) 11 vs T scatter revealing condition clustering. (D) Kernel shapes by condition, with
50-t0-250 Constant (green) showing the most delayed peak.

4.3 Condition-Dependent Timescales

The fast timescale 71 shows condition-dependence, ranging from 0.26 s (0-to-250 Cycling) to 1.18 s
(50-t0-250 Constant). The 4-fold range in 7 suggests that baseline neural excitation modulates the
speed of sensory transduction. In contrast, the slow timescale 75 remains relatively stable (3.7-4.5
s) across conditions, indicating that synaptic adaptation operates on an intrinsic circuit timescale
independent of stimulus parameters.

The 50-to-250 Constant condition, which has persistent low-level LED activation, produces the
slowest fast component. The slowed fast component may reflect partial adaptation of the rapid
sensory pathway under tonic stimulation, reducing the contrast of stimulus onset and slowing the

initial response.
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4.4 Factorial Design Insights

The extension to a 2 x 2 factorial design reveals a dissociation between stable properties such
as kernel shape and timescales in contrast to condition-dependent properties such as amplitude.
Stable kernel shape suggests that circuit dynamics are intrinsic to the GMR61 pathway, while gain
modulation reflects sensory context.

The partial adaptation effect shows 66% weaker suppression for 50-to-250, matching ratio-based
scaling as described by the Weber-Fechner law, where response magnitude depends on the intensity
ratio rather than the absolute level. The cycling background enhancement produces 15% stronger
suppression and may reflect background-dependent gain modulation; possible mechanisms include
reduced steady-state adaptation or temporal contrast effects, though the specific circuit basis remains
to be determined.

Notably, baseline hazard and LED1-driven suppression gain are dissociable. Intensity manipulation
affects both properties by reducing baseline turning alongside suppression amplitude, in contrast to
cycling background manipulation which reduces baseline while increasing suppression gain. The
dissociation indicates that tonic excitability and stimulus-locked modulation are independently
tunable circuit properties.

4.5 Limitations

Although point estimates of 71 span approximately 4-fold across conditions (0.26-1.18 s), formal tests
for heterogeneity based on bootstrap resampling do not reach significance (Cochran’s @ p = 0.252;
I? = 27%, moderate heterogeneity). The observed range may reflect genuine biological variation or
estimator noise given the sample size. The 7 variation is therefore interpreted as a hypothesis for
future investigation rather than a demonstrated effect. Effect size analysis (Supplementary Material)
reveals that the largest pairwise difference (0-to-250 Cycling vs 50-t0-250 Constant) corresponds to
Hedges’ g = 3.1 (large effect), but overlapping confidence intervals preclude strong claims about
condition-specific timescales.

While the factorial model captures main effects well with mean rate ratio = 1.03, the 58% leave-one-
out pass rate with 8/14 experiments within +25% of target does not significantly exceed chance
with binomial p = 0.39. The 58% pass rate indicates modest rather than strong out-of-sample
validation, likely reflecting substantial session-to-session variability from experimental factors such
as agar moisture and larval developmental stage not captured by the model.

The primary analysis uses a fixed-effects NB-GLM that pools across experiments. A robustness
check using NB-GLMM with random track intercepts (Supplementary Table S2b) showed that the
kernel parameters differ by less than 3.5% between models, with random effect SD = 0.59 indicating
substantial between-track variation in baseline rate.

Reorientation events were defined using is_reorientation_start from the tracking pipeline,
yielding 7,288 events across all factorial conditions. Of these, 77% have zero measured duration,
representing onset events including micro head sweeps, while 23% have duration > 0.1 s and qualify
as true turns. The LNP model was fit to all events to maximize power; trajectory simulations use
only the filtered subset.

Time-rescaling analysis showed modest deviation from the ideal Poisson model with KS test p = 0.17
and mean deviation 1.3%, within acceptable limits for point process models. Remaining deviation
may reflect short-term dependencies such as refractoriness. An explicit post-event kernel could
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improve IEI fits but would not change the main LED1-driven suppression dynamics.

The run/turn simulator omits edge avoidance as well as head sweeps and speed gradients. The
simplified dynamics suffice for demonstrating hazard-driven timing but limit biomechanical realism.

Using Mason Klein’s reverse crawl detection algorithm with SpeedRunVel < 0 for > 3 s, 1,853
reversal events were identified across all 14 experiments, comprising 2.3% of total observation time.
Reverse crawls show the opposite LED modulation from reorientations: LED stimulation ¢ncreases
reverse crawl probability by 14% (x? test p < 0.001), with a pronounced spike to 7% in the first
0-5 s after LED onset before declining below baseline. The pattern suggests a biphasic escape
response with immediate backward locomotion followed by suppression of turning. A three-state
model including run, turn, and reverse states could capture the full behavioral repertoire but is
beyond the current scope.

Event detection relies on fixed thresholds of 30° for turns, 0.5 s for pauses, and 3 s for reverse crawls
that have not been formally sensitivity-tested. Changes in stimulus intensity may alter movement
kinematics such that fixed thresholds misclassify events differently across conditions, potentially
biasing 7, estimates. Threshold robustness analysis with £20% variation and model refitting is
warranted to confirm that the reported timescale differences are not detection artifacts.

4.6 Alternative Explanations

The interpretation that baseline illumination modulates sensory transduction speed 7 and gain
amplitude is presented as a hypothesis consistent with the data, not a firm conclusion. Several
alternative explanations cannot be excluded:

The 71 variation admits several alternative explanations. Behavioral state confounds represent one
possibility, as larvae in high-intensity or high-background conditions may differ in arousal, fatigue, or
adaptation states that affect reaction time independently of sensory transduction. Event detection
artifacts offer another explanation, since fixed turn-angle thresholds applied to conditions with
different movement kinematics could bias which events are detected and when, shifting apparent
71 without reflecting true sensory dynamics. Track selection bias cannot be excluded, as the 79
complete tracks comprising 11% of total used for variability analysis may differ systematically from
incomplete tracks, though speed comparisons show no significant difference (p = 0.24). Fitting noise
may also contribute, given the non-significant heterogeneity test (p = 0.252); some of the apparent
71 range may reflect estimator variance rather than genuine biological differences.

The amplitude variation also admits alternative explanations. Motor decision probability rep-
resents one possibility, as the suppression amplitude may reflect the probability of initiating a
reorientation given a stimulus as a motor decision rather than purely sensory gain modulation.
State occupancy differences offer another explanation, since conditions that promote more running
versus pausing could shift apparent amplitude due to different baseline behavioral distributions.
Model mis-specification cannot be excluded, as a gamma-difference kernel that cannot capture all
relevant temporal structure such as non-stationarities or individual differences may show amplitude
compensation for unmodeled dynamics.

Testing these alternative explanations would require genetic manipulations to change baseline
excitation or hazard-model analyses that include covariates for speed and run history as well as
time since experiment start.
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4.7 Behavioral Variability and Phenotype Identification

The event duration distributions (Supplementary Figure S7) reveal condition-dependent differences
in behavioral timing that may serve as phenotypic signatures. Pause durations are significantly
longer in 50-t0-250 conditions (p < 0.001, Kruskal-Wallis), suggesting that baseline illumination
affects not only reorientation probability but also the temporal structure of exploratory pauses.
Turn durations also vary significantly across conditions (p < 0.001), while run durations show only
marginal differences (p = 0.08).

Event durations varied significantly for turns and pauses in contrast to runs which showed only
marginal differences, suggesting that kernel-derived timescales 71 and 75 combined with event duration
statistics could provide a multidimensional behavioral fingerprint for phenotype identification.
Animals with similar stimulus-response dynamics in kernel shape but different behavioral tempo in
event durations may represent distinct behavioral phenotypes within the same genotype. Future
work should leverage complete tracks spanning the full experiment to establish individual-level
variability bounds before attempting phenotype clustering.

4.8 Trial-to-Trial Sensitization

Analysis of fractional behavior usage across repeated LED pulses revealed a systematic sensitization
effect not captured by the stationary kernel assumption. Turn fraction increased approximately 2-3
fold over the 20-minute experiment. At pulse 0, turn fraction ranged from 8-28% across conditions;
by pulse 17, it reached 37-78%. All conditions showed significant positive slopes with p < 0.001 for
linear trend. Cycling background conditions showed faster sensitization with slopes of +0.029 to
40.031 per pulse compared to constant background conditions with slopes of +0.015 to +0.021 per
pulse. Pause fraction and reverse crawl fraction remained relatively flat across pulses, indicating
that the sensitization effect is specific to turning behavior rather than a general arousal change.
The increasing turn propensity over time suggests that animals become more responsive to the LED
stimulus with repeated exposure, possibly through sensitization of the reorientation circuit. Future
models may need to incorporate trial-to-trial non-stationarity to fully capture behavioral dynamics
across extended experiments.

4.9 Future Directions

Several extensions would enhance the model, including temporal refinements such as a refractory
kernel for post-event suppression alongside a random-effects GLMM for track-level heterogeneity,
spatial extensions such as edge avoidance for bounded arenas alongside chemotaxis integration
for gradient navigation, and downstream applications such as phenotype clustering using kernel
parameters and event duration features.

5 Conclusions

An analytic LNP kernel for optogenetically-driven larval reorientation is presented that combines
interpretability with predictive accuracy. The 6-parameter gamma-difference form captures two
biologically meaningful timescales 71 = 0.29 s and 7@ = 3.81 s and reproduces empirical event
statistics with high fidelity with rate ratio = 0.97 and R? = 0.968.

Extension to a 2 x 2 factorial design with 14 experiments, 701 tracks, and 7,867 events reveals
conserved kernel shape alongside condition-dependent amplitude, with baseline intensity effects
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showing 66% suppression reduction for 50-to-250 PWM in contrast to background pattern effects
showing 15% suppression increase for cycling. All factorial effects are statistically significant,
indicating that the model can quantify condition-specific modulation of sensorimotor processing.

Embedded in a run/turn trajectory simulator, the model generates realistic larval behavior that
matches observed turn rates of 1.88 vs 1.84 turns/min. The LNP model framework provides a
starting point for quantitative analysis of sensorimotor processing across experimental conditions
and genotypes.
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