
Supplementary Materials

Temporal dynamics of mechanosensory behavior in

Drosophila larvae

Table S1: Leave-One-Experiment-Out Cross-Validation Results

Leave-one-experiment-out cross-validation was performed to assess model generalization. For each of 14
experiments, the factorial NB-GLM was fit on the remaining 13 experiments and used to predict event rates
for the held-out experiment.

Condition Empirical Predicted Rate Ratio Status

0-to-250 — Constant (n=2)
Exp 1 737 785 1.066 Pass
Exp 2 670 629 0.938 Pass

0-to-250 — Cycling (n=4)
Exp 1 555 921 1.659 Fail
Exp 2 488 395 0.809 Pass
Exp 3 822 603 0.733 Fail
Exp 4 545 534 0.981 Pass

50-to-250 — Constant (n=4)
Exp 1 766 603 0.787 Fail
Exp 2 571 937 1.641 Fail
Exp 3 657 655 0.997 Pass
Exp 4 446 305 0.684 Fail

50-to-250 — Cycling (n=2)
Exp 1 477 553 1.160 Pass
Exp 2 554 478 0.862 Pass

Summary
Mean ± SD — — 1.03 ± 0.31 7/12 Pass

Table S1: Cross-validation results. Rate ratio within 0.8–1.25 indicates acceptable generalization. Pass rate
= 58%.

Table S2: Model Comparison

Model Parameters AIC Deviance Notes
Fixed-effects NB-GLM 8 114,814 94,592 Primary model
NB-GLMM (1—track) 9 + 623 RE — — Random intercepts

Table S2: Model comparison. The fixed-effects model was used for all reported analyses. GLMM with
random track intercepts is included as a robustness check.
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Table S2b: GLMM Robustness Check

A Negative Binomial GLMM with random track intercepts was fit using Bambi/PyMC to verify that the
main findings are robust to hierarchical structure.

Parameter Fixed-Effects GLMM Change
α (kernel amplitude) 1.005 0.971 −3.4%
αI (intensity effect) −0.665 −0.655 +1.5%
αC (cycling effect) 0.152 0.148 −2.5%
γ (rebound) 1.669 1.408 −15.7%
Random effect SD (σtrack) — 0.59 —

Table S2b: Comparison of key parameters between fixed-effects NB-GLM and NB-GLMM. The kernel am-
plitude effects (α, αI , αC) differ by less than 3.5%, confirming that the main findings are robust to inclusion
of random intercepts. The random effect SD of 0.59 indicates substantial between-track variation in baseline
event rate.

Table S3: Condition-Specific Suppression Amplitudes

The kernel amplitude varies across conditions while maintaining invariant shape and timescales:

Condition Amplitude Events Tracks Interpretation
0-to-250 — Constant 1.005 1,407 99 Reference condition
0-to-250 — Cycling 1.157 2,410 214 +15% (cycling enhancement)
50-to-250 — Constant 0.340 2,440 187 −66% (partial adaptation)
50-to-250 — Cycling 0.492 1,031 123 Combined effects

Table S3: Suppression amplitudes computed as α+ αI · I + αC · C.

2



Figure S1: Residual Diagnostics

Figure 1: Factorial model diagnostics. (A) Pearson residuals vs fitted values show no systematic pattern.
(B) Deviance residuals vs fitted values. (C) Q-Q plot of Pearson residuals against theoretical normal quan-
tiles. (D) Residual distributions by condition show similar spread across all four experimental conditions.
Residual mean = 0.0001, SD = 1.01.
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Figure S2: Time-Rescaling Test

The time-rescaling test assesses whether the fitted hazard model produces inter-event intervals consistent
with a Poisson process. Under the correct model, rescaled inter-event times should follow Exp(1), and their
cumulative distribution should be uniform.

Figure 2: Time-rescaling test. Empirical cumulative distribution of rescaled inter-event times (blue)
compared to expected uniform distribution (red dashed). Gray shading indicates 95% confidence band. KS
test: D = 0.041, p = 0.17. Mean deviation = 1.3%, indicating adequate model fit.

Diagnostic Statistics

• Pearson residuals: Mean = 0.0001, SD = 1.01, Skew = 40.7, Kurtosis = 2440

• Large residuals: 7,288 observations (0.09%) with |r| > 3

• Time-rescaling: KS statistic = 0.041, p = 0.17, mean deviation = 1.3%

The high skewness and kurtosis of residuals reflect the zero-inflated nature of event data (most frames
have no events). The time-rescaling test passes at conventional significance levels, supporting the adequacy
of the hazard model specification.
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Table S4: Kernel Parameters with Bootstrap Confidence Intervals

Bootstrap resampling (100 track-level resamples) was used to estimate 95% confidence intervals for all kernel
parameters.

Parameter Estimate 95% CI Interpretation
A (fast amplitude) 0.456 [0.409, 0.499] Excitatory component weight
α1 (fast shape) 2.22 [1.93, 2.65] ∼2 processing stages
β1 (fast scale, s) 0.132 [0.102, 0.168] Stage time constant
B (slow amplitude) 12.54 [12.43, 12.66] Suppressive component weight
α2 (slow shape) 4.38 [4.30, 4.46] ∼4 processing stages
β2 (slow scale, s) 0.869 [0.852, 0.890] Stage time constant
Derived timescales
τ1 (fast mean, s) 0.294 [0.268, 0.326] Fast component timescale
τ2 (slow mean, s) 3.81 [3.79, 3.84] Slow component timescale
Peak fast (s) 0.162 [0.147, 0.181] Time of fast peak
Peak slow (s) 2.94 [2.93, 2.96] Time of slow peak

Table S4: Gamma-difference kernel parameters with 95% bootstrap confidence intervals (100 track-level
resamples). The narrow CIs for slow component parameters reflect strong identifiability.

Table S5: Turn Distribution Parameters

Turn angle and duration distributions from 319 filtered events (turn duration > 0.1 s) were used to param-
eterize trajectory simulation.

Metric Value 95% Range Best-Fit Distribution
Turn Angle
Mean 6.8◦ Normal(µ = 6.8◦, σ = 86.2◦)
SD 86.2◦

Absolute mean 68.6◦

Turn Duration
Mean 1.55 s Lognormal(s = 0.59, scale = 1.29 s)
Median 1.10 s [0.30, 6.85] s
SD 1.06 s

Table S5: Turn angle and duration statistics from 319 filtered reorientation events. Turn angles follow a
normal distribution with slight rightward bias. Turn durations follow a lognormal distribution with median
1.1 s.
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Figure S3: Reverse Crawl LED Modulation

Reverse crawl detection using Mason Klein’s algorithm (SpeedRunVel < 0 for ≥ 3 s) identified 1,853 reversal
events across all 14 experiments. In contrast to reorientations (which are suppressed by LED), reverse crawls
are increased during LED stimulation.

Figure 3: LED modulation of reverse crawl behavior. (A) Reverse crawl percentage during baseline
(2.11%) vs peak-intensity (2.40%), showing a 14% increase (χ2 test p < 0.001). (B) Time-resolved analysis
reveals a pronounced spike to 6.7–7.2% in the first 0–5 s after stimulus onset, declining below baseline
(< 1%) after 10 s. (C) Comparison of behavioral state durations: reverse crawls (2.29% of time) exceed
reorientations (0.09% of time) by 25-fold.
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Figure S4: Reverse Crawl Detection Validation

Reverse crawl detection was validated against the original MATLAB code (mason analysis.m) on Track 2 of
the reference experiment.

Figure 4: Validation of reverse crawl detection. (A) SpeedRunVel time series for Track 2 with detected
reversals marked. (B) Zoom on first reversal showing exact match between Python (shaded region) and
MATLAB (green dashed lines). (C) Comparison table: all 5 reversals in Track 2 match MATLAB output
within 0.1 s, confirming algorithm correctness.
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Figure S5: PSTH Model Validation

The peri-stimulus time histogram (PSTH) provides a visual comparison of model predictions against empir-
ical event rates aligned to LED onset.

Figure 5: PSTH model validation. Empirical event rate (black) and model-predicted rate (red) aligned
to stimulus onset (time = 0). Gray shading indicates peak-intensity period (0–10 s). The model captures
the rapid suppression within 0.5 s of stimulus onset, the sustained suppression during peak intensity, and
the gradual recovery after stimulus offset. PSTH correlation r = 0.84.

Table S6: Per-Condition Kernel Parameters

The gamma-difference kernel was fit separately to each of the four experimental conditions in the 2 × 2
factorial design. Bootstrap confidence intervals (95%) were computed from 200 resamples.

Table S6: Per-condition kernel parameters with 95% bootstrap CIs.

Condition τ1 (s) 95% CI τ2 (s) 95% CI R2

0-to-250 Constant 0.32 [0.23, 1.01] 3.73 [3.02, 4.08] 0.94
0-to-250 Cycling 0.26 [0.23, 0.71] 4.20 [3.79, 4.51] 0.96
50-to-250 Constant 1.18 [0.69, 2.21] 4.53 [3.64, 5.44] 0.95
50-to-250 Cycling 0.44 [0.23, 0.87] 4.50 [3.69, 5.19] 0.81

Key finding: The 50-to-250 Constant condition shows a 4-fold slower fast timescale (τ1 = 1.18 s vs
∼0.3 s), suggesting that baseline neural excitation modulates sensory transduction speed.

Table S7: Model Comparison

Table S7: Comparison of kernel parameterizations by goodness-of-fit.

Model Parameters R2 AIC Interpretation
Raised Cosine (12 basis) 12 0.974 −3386 Overparameterized
Gamma-Difference 6 0.968 −357 Biologically interpretable
Alpha-Difference 4 0.950 108 Intermediate
Double Exponential 4 0.811 1432 No shape control
Single Exponential 2 < 0 1007 Too simple

The gamma-difference model achieves near-optimal fit quality (R2 = 0.968) with half the parameters of the
raised-cosine basis, while providing biological interpretability (timescales map to neural processes).
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Note: The single exponential model shows R2 < 0 because it cannot capture the biphasic (suppression-
then-recovery) kernel shape. A negative R2 indicates the model performs worse than predicting the mean,
which is expected when fitting a monotonic decay to a non-monotonic target.

Figure S7: Event Duration Distributions

Event durations from Mason Klein run tables and trajectory segmentation characterize the temporal struc-
ture of larval behavior across conditions.

Figure 6: Event duration distributions by condition. Boxplots showing durations of four behavioral
event types across the four experimental conditions. (A) Run durations from Klein run tables (column runT);
no significant condition effect (Kruskal-Wallis p = 0.08). (B) Turn durations show significant condition
effects (p < 0.001). (C) Pause durations vary significantly across conditions (p < 0.001), with 50-to-250
conditions showing longer pauses. (D) Event counts by condition and type. These distributions may inform
future phenotype identification.
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Figure S8: Fractional Behavior by Pulse

Behavioral state fractions (run, pause, turn, reverse crawl) were computed for each pulse across the 20-minute
experiments. The stacked bar plots reveal systematic shifts in behavioral allocation over successive pulses.

Figure 7: Fractional behavior by pulse across conditions. Forward crawling dominates behavioral
allocation at approximately 75% of time, with turning at 20%, reverse crawls at 3%, and pauses at 1.5%. Two
trends emerge across successive pulses. First, turn and pause fractions increase progressively while forward
crawling decreases, consistent with trial-to-trial sensitization to repeated stimulation. Second, the 50-to-
250 conditions show elevated reverse crawl fractions compared to 0-to-250 conditions, with the difference
becoming pronounced after pulse 6. The cycling background conditions show slightly higher variability in
behavioral allocation compared to constant background conditions.
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