Temporal dynamics of mechanosensory behavior in

Supplementary Materials

Drosophila larvae

Table S1: Leave-One-Experiment-Out Cross-Validation Results

Leave-one-experiment-out cross-validation was performed to assess model generalization. For each of 14
experiments, the factorial NB-GLM was fit on the remaining 13 experiments and used to predict event rates
for the held-out experiment.

Condition Empirical Predicted Rate Ratio Status
0-to-250 — Constant (n=2)

Exp 1 737 785 1.066 Pass

Exp 2 670 629 0.938 Pass
0-to-250 — Cycling (n=4)

Exp 1 555 921 1.659  Fail

Exp 2 488 395 0.809 Pass

Exp 3 822 603 0.733  Fail

Exp 4 545 534 0.981 Pass
50-to-250 — Constant (n=4)

Exp 1 766 603 0.787  Fail

Exp 2 571 937 1.641 Fail

Exp 3 657 655 0.997 Pass

Exp 4 446 305 0.684 Fail
50-t0-250 — Cycling (n=2)

Exp 1 477 553 1.160 Pass

Exp 2 554 478 0.862 Pass
Summary

Mean + SD — — 1.03+0.31 7/12 Pass

Table S1: Cross-validation results. Rate ratio within 0.8-1.25 indicates acceptable generalization. Pass rate

= 58%.

Table S2: Model Comparison

Model Parameters AIC Deviance Notes
Fixed-effects NB-GLM 8 114,814 94,592 Primary model
NB-GLMM (1—track) 9 + 623 RE — — Random intercepts

Table S2: Model comparison. The fixed-effects model was used for all reported analyses.

random track intercepts is included as a robustness check.

GLMM with



Table S2b: GLMM Robustness Check

A Negative Binomial GLMM with random track intercepts was fit using Bambi/PyMC to verify that the
main findings are robust to hierarchical structure.

Parameter Fixed-Effects GLMM Change
a (kernel amplitude) 1.005 0.971 —3.4%
ay (intensity effect) —0.665 —0.655 +1.5%
ac (cycling effect) 0.152 0.148 -2.5%
v (rebound) 1.669 1.408 —15.7%
Random effect SD (o¢rack) — 0.59 —

Table S2b: Comparison of key parameters between fixed-effects NB-GLM and NB-GLMM. The kernel am-
plitude effects («, ar, a¢) differ by less than 3.5%, confirming that the main findings are robust to inclusion
of random intercepts. The random effect SD of 0.59 indicates substantial between-track variation in baseline

event rate.

Table S3: Condition-Specific Suppression Amplitudes

The kernel amplitude varies across conditions while maintaining invariant shape and timescales:

Condition Amplitude Events Tracks Interpretation

0-t0-250 — Constant 1.005 1,407 99 Reference condition

0-t0-250 — Cycling 1.157 2,410 214 +15% (cycling enhancement)
50-t0-250 — Constant 0.340 2,440 187 —66% (partial adaptation)
50-t0-250 — Cycling 0.492 1,031 123 Combined effects

Table S3: Suppression amplitudes computed as o+ ay - I + a¢ - C.



Figure S1: Residual Diagnostics
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Figure 1: Factorial model diagnostics. (A) Pearson residuals vs fitted values show no systematic pattern.
(B) Deviance residuals vs fitted values. (C) Q-Q plot of Pearson residuals against theoretical normal quan-
tiles. (D) Residual distributions by condition show similar spread across all four experimental conditions.
Residual mean = 0.0001, SD = 1.01.



Figure S2: Time-Rescaling Test
The time-rescaling test assesses whether the fitted hazard model produces inter-event intervals consistent

with a Poisson process. Under the correct model, rescaled inter-event times should follow Exp(1), and their
cumulative distribution should be uniform.

Time-Rescaling Test (KS p = 0.1685)
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Figure 2: Time-rescaling test. Empirical cumulative distribution of rescaled inter-event times (blue)
compared to expected uniform distribution (red dashed). Gray shading indicates 95% confidence band. KS
test: D = 0.041, p = 0.17. Mean deviation = 1.3%, indicating adequate model fit.

Diagnostic Statistics
e Pearson residuals: Mean = 0.0001, SD = 1.01, Skew = 40.7, Kurtosis = 2440
e Large residuals: 7,288 observations (0.09%) with |r| > 3
e Time-rescaling: KS statistic = 0.041, p = 0.17, mean deviation = 1.3%

The high skewness and kurtosis of residuals reflect the zero-inflated nature of event data (most frames
have no events). The time-rescaling test passes at conventional significance levels, supporting the adequacy
of the hazard model specification.



Table S4: Kernel Parameters with Bootstrap Confidence Intervals

Bootstrap resampling (100 track-level resamples) was used to estimate 95% confidence intervals for all kernel
parameters.

Parameter Estimate 95% CI Interpretation
A (fast amplitude) 0.456  [0.409, 0.499]  Excitatory component weight
o (fast shape) 2.22 [1.93, 2.65] ~2 processing stages
B1 (fast scale, s) 0.132  [0.102, 0.168] Stage time constant
B (slow amplitude) 12.54 [12.43, 12.66] Suppressive component weight
as (slow shape) 4.38 [4.30, 4.46] ~4 processing stages
B2 (slow scale, s) 0.869 [0.852, 0.890] Stage time constant
Derived timescales

71 (fast mean, s) 0.294 [0.268, 0.320] Fast component timescale
7o (slow mean, s) 3.81 [3.79, 3.84] Slow component timescale
Peak fast (s) 0.162 [0.147, 0.181] Time of fast peak
Peak slow (s) 2.94 [2.93, 2.96] Time of slow peak

Table S4: Gamma-difference kernel parameters with 95% bootstrap confidence intervals (100 track-level
resamples). The narrow Cls for slow component parameters reflect strong identifiability.

Table S5: Turn Distribution Parameters

Turn angle and duration distributions from 319 filtered events (turn duration > 0.1 s) were used to param-
eterize trajectory simulation.

Metric Value 95% Range Best-Fit Distribution
Turn Angle

Mean 6.8° Normal(p = 6.8°, o = 86.2°)
SD 86.2°

Absolute mean 68.6°
Turn Duration

Mean 1.55s Lognormal(s = 0.59, scale = 1.29 s)
Median 1.10s  [0.30, 6.85] s
SD 1.06 s

Table S5: Turn angle and duration statistics from 319 filtered reorientation events. Turn angles follow a
normal distribution with slight rightward bias. Turn durations follow a lognormal distribution with median
1.1s.



Figure S3: Reverse Crawl LED Modulation

Reverse crawl detection using Mason Klein’s algorithm (SpeedRunVel < 0 for > 3 s) identified 1,853 reversal
events across all 14 experiments. In contrast to reorientations (which are suppressed by LED), reverse crawls
are increased during LED stimulation.
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Figure 3: LED modulation of reverse crawl behavior. (A) Reverse crawl percentage during baseline
(2.11%) vs peak-intensity (2.40%), showing a 14% increase (x? test p < 0.001). (B) Time-resolved analysis
reveals a pronounced spike to 6.7-7.2% in the first 0-5 s after stimulus onset, declining below baseline
(< 1%) after 10 s. (C) Comparison of behavioral state durations: reverse crawls (2.29% of time) exceed
reorientations (0.09% of time) by 25-fold.



Figure S4: Reverse Crawl Detection Validation

Reverse crawl detection was validated against the original MATLAB code (mason_analysis.m) on Track 2 of

the reference experiment.

A. SpeedRunVel Time Series with Detected Reversals
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B. First Reversal (Python: 38.1-41.2s, MATLAB: 38.1-41.2s)
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C. Python vs MATLAB Reversal Detection Comparison

50

# Python Start Python End Python Dur MATLAB Start MATLAB End MATLAB Dur Match
1 38.1s 41.2s 3.1s 38.1s 41.2s 3.1s v
2 87.0s 93.9s 6.9s 87.0s 93.9s 6.9s v
3 176.5s 185.5s 9.0s 176.5s 185.5s 9.0s v
4 480.8s 485.3s 4.4s 480.8s 485.3s 4.4s v
5 488.8s 493.8s 4.9s 488.8s 493.8s 4.9s v

Figure 4: Validation of reverse crawl detection. (A) SpeedRunVel time series for Track 2 with detected
reversals marked. (B) Zoom on first reversal showing exact match between Python (shaded region) and
MATLAB (green dashed lines). (C) Comparison table: all 5 reversals in Track 2 match MATLAB output
within 0.1 s, confirming algorithm correctness.



Figure S5: PSTH Model Validation

The peri-stimulus time histogram (PSTH) provides a visual comparison of model predictions against empir-
ical event rates aligned to LED onset.

Peri-Stimulus Time Histogram by Condition (mean * 95% CI across tracks)

0-250 | Constant

0-250 | Cycling

50-250 | Constant

50-250 | Cycling

=99 tracks
(2 expts)

Turn rate (events/min)

2MLMW

n=214 trac|

(4 expts)

ks

n=187 tracks
(4 expts)

«JV\'-M\M/MM"M

n=123 tracks
(2 expts)

-10 =5 0 5 10 15 20 -10 =5

Time rel. to LED onset (s)

0 5 10
Time rel. to LED onset (s)

15 20 -10 =5 0 5

10
Time rel. to LED onset (s)

15 20 -10 -5 0 5 10 15 20

Time rel. to LED onset (s)

Figure 5: PSTH model validation. Empirical event rate (black) and model-predicted rate (red) aligned
to stimulus onset (time = 0). Gray shading indicates peak-intensity period (0-10 s). The model captures
the rapid suppression within 0.5 s of stimulus onset, the sustained suppression during peak intensity, and
the gradual recovery after stimulus offset. PSTH correlation r = 0.84.

Table S6: Per-Condition Kernel Parameters

The gamma-difference kernel was fit separately to each of the four experimental conditions in the 2 x 2
factorial design. Bootstrap confidence intervals (95%) were computed from 200 resamples.

Table S6: Per-condition kernel parameters with 95% bootstrap Cls.

Condition 1 (s)  95%CI 1 (s) 95% CI R?
0-t0-250 Constant 0.32  [0.23,1.01] 3.73 [3.02, 4.08] 0.94
0-t0-250 Cycling  0.26  [0.23,0.71]  4.20  [3.79, 4.51] 0.96
50-t0-250 Constant  1.18  [0.69, 2.21] 453  [3.64, 5.44] 0.95
50-t0-250 Cycling 044  [0.23, 0.87) 4.50  [3.69, 5.19] 0.81

Key finding: The 50-to-250 Constant condition shows a 4-fold slower fast timescale (17 = 1.18 s vs
~0.3 8), suggesting that baseline neural excitation modulates sensory transduction speed.

Table S7: Model Comparison

Table S7: Comparison of kernel parameterizations by goodness-of-fit.

Model Parameters R? AIC  Interpretation

Raised Cosine (12 basis) 12 0.974 —3386 Overparameterized
Gamma-Difference 6 0.968 —357 Biologically interpretable
Alpha-Difference 4 0.950 108 Intermediate

Double Exponential 4 0.811 1432  No shape control

Single Exponential 2 <0 1007  Too simple

The gamma-difference model achieves near-optimal fit quality (R? = 0.968) with half the parameters of the
raised-cosine basis, while providing biological interpretability (timescales map to neural processes).



Note: The single exponential model shows R? < 0 because it cannot capture the biphasic (suppression-
then-recovery) kernel shape. A negative R? indicates the model performs worse than predicting the mean,
which is expected when fitting a monotonic decay to a non-monotonic target.

Figure S7: Event Duration Distributions

Event durations from Mason Klein run tables and trajectory segmentation characterize the temporal struc-
ture of larval behavior across conditions.
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Figure 6: Event duration distributions by condition. Boxplots showing durations of four behavioral
event types across the four experimental conditions. (A) Run durations from Klein run tables (column runT);
no significant condition effect (Kruskal-Wallis p = 0.08). (B) Turn durations show significant condition
effects (p < 0.001). (C) Pause durations vary significantly across conditions (p < 0.001), with 50-t0-250
conditions showing longer pauses. (D) Event counts by condition and type. These distributions may inform
future phenotype identification.



Figure S8: Fractional Behavior by Pulse

Behavioral state fractions (run, pause, turn, reverse crawl) were computed for each pulse across the 20-minute
experiments. The stacked bar plots reveal systematic shifts in behavioral allocation over successive pulses.
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Figure 7: Fractional behavior by pulse across conditions. Forward crawling dominates behavioral
allocation at approximately 75% of time, with turning at 20%, reverse crawls at 3%, and pauses at 1.5%. Two
trends emerge across successive pulses. First, turn and pause fractions increase progressively while forward
crawling decreases, consistent with trial-to-trial sensitization to repeated stimulation. Second, the 50-to-
250 conditions show elevated reverse crawl fractions compared to 0-to-250 conditions, with the difference
becoming pronounced after pulse 6. The cycling background conditions show slightly higher variability in
behavioral allocation compared to constant background conditions.
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