Individual-level behavioral phenotyping in Drosophila larvae using
simulation-based inference: Supplementary Material

Gil Raitses Mirna Mihovilovic Skanata

Supplementary Methods

Simulation Parameters

[Details of simulation parameters will be added here]

Kernel Fitting Details

[Detailed kernel fitting procedures and optimization parameters]

Clustering Algorithm Details

[Detailed clustering parameters and validation metrics]

Supplementary Results
Individual Track Kernel Fits

[Summary statistics of individual kernel fits]

Cross-Validation Results

[Detailed cross-validation results tables]

Clustering Stability Metrics

[Detailed clustering stability analysis]

Supplementary Figures

[Supplementary figures will be added here]

Computational Field Notes

This section documents implementation decisions made during the analysis pipeline development,
with emphasis on preserving statistical rigor.

GPU Vectorization for Power Analysis

0.0.0.1 Initial serial implementation. The power analysis was initially implemented in
sequential Python (NumPy/SciPy). After 94+ hours of CPU execution, only 2 of 8 event-count
conditions had completed. Projected total runtime exceeded 70 hours, making this approach
impractical. The serial script was terminated and reimplemented for GPU execution. This section
documents the reimplementation to confirm that statistical rigor was preserved.

0.0.0.2 Computational requirements. The simulation-based power analysis (main text,
Methods: Power Analysis) requires fitting 100 population tracks x 100 fast-responder tracks X
8 event counts x 50 bootstrap replicates = 800,000 model fits. Sequential CPU execution was
estimated at >70 hours.

To accelerate computation, the pipeline was migrated to GPU using JAX with full vectorization.
This implementation choice maintains 100% statistical equivalence to sequential execution:

e Simulation fidelity: Each track is simulated from the same gamma-difference kernel model
with reproducible random seeds via JAX’s PRNG key splitting.

o Optimization equivalence: MLE optimization uses identical objective functions (log-
likelihood with integral term) and convergence criteria.

e Bootstrap procedure: Parametric bootstrap samples are generated identically—simulate
from fitted parameters, refit, collect parameter estimates.

e CI calculation: Confidence intervals computed as 2.5th—97.5th percentiles of bootstrap
distributions.

e Error rate definitions: Type I error = proportion of population tracks whose CI excludes
true 71; Power = proportion of fast-responder tracks whose CI excludes population mean.

The only difference is execution strategy: vmap (process_track) (keys) processes all 100 tracks in
parallel on GPU, whereas a Python for loop processes them sequentially on CPU. Mathematically,
these are identical—vmap is a parallel map operator with no side effects that could alter results.

Random number handling ensures reproducibility:

key = PRNGKey(42)

keys = split(key, 100)

Sequential: for i in range(100): simulate(keys[i])

Vectorized: vmap(simulate) (keys) # Same keys, same results

Final runtime with GPU vectorization: ~30 minutes (Tesla T4) vs >70 hours (CPU sequential), a
>140x speedup with zero impact on statistical validity.
Event Definition Verification

During validation pipeline development, a critical inconsistency was identified: some scripts used
klein_run_table/time0 (run start times) while others used is_reorientation_start (reorienta-
tion onset times). These are distinct events:

e Run start: The larva begins a forward locomotion bout.

o Reorientation onset: The larva transitions from run to turn (the event modeled by the
kernel).

All pipelines were verified to use is_reorientation_start consistently, matching the event defini-
tion in the original study.

Multi-Start Optimization

The 6-parameter gamma-difference kernel produces a non-convex likelihood surface. Initial imple-
mentations used single-start optimization, which converged to local minima in ~15-20% of tracks,
producing qualitatively incorrect kernel shapes (e.g., inverted polarity, implausible time constants).

The corrected implementation uses grid search initialization:
e 7 €40.3,0.6,0.9} s
e T €{1.0,2.0,3.0} s
o« A/B € {1.0,2.0}
yielding 18 initial points. The solution with highest final log-likelihood was retained.

Structural Identifiability Analysis

During power analysis debugging, a fundamental structural identifiability issue was discovered that
explains the difficulty of individual-level kernel fitting.

0.0.0.3 The problem. The gamma-difference kernel with population parameters A = 1.5 and
B = 12.0 produces a predominantly inhibitory response: K (t) < 0 for ¢t > 0.2 s during LED-ON.
This means:

1. Events are suppressed during LED-ON relative to LED-OFF.

2. Only ~20% of events occur during LED-ON, despite LED-ON comprising 33% of the stimulus
cycle.

3. A typical track has only ~2 events in the LED-ON window where 71 information is concentrated.

0.0.0.4 Diagnostic evidence. Likelihood surface analysis revealed that the log-likelihood is
nearly flat across a wide range of 71 values. For a representative track with 11 total events (2 in

LED-ON):

True taul = 0.63s

LL at taul=0.63: -53.98

LL at taul=1.50: -53.83 (HIGHER - MLE converges here)
Fitted taul: 1.87s (3x too high)

The MLE finds a spuriously high 7 because the likelihood difference between true and incorrect
values is smaller than stochastic variation.

0.0.0.5 Why longer tracks do not help. The ratio of informative (LED-ON) to uninformative
(LED-OFF) events is determined by the stimulus protocol and kernel shape, not by track duration.
Extending recordings from 20 to 80 minutes would increase total events proportionally, but the

~20% informative fraction would remain constant. The Fisher information for 71 grows only with
informative events in the LED-ON window.

0.0.0.6 Implications. This finding validates the manuscript’s conclusion that individual 7
estimation is not feasible under the current experimental design. The problem is structural (kernel
parameterization + stimulus protocol) rather than merely data sparsity. Resolution would require
either:

o Modified experimental design (higher duty cycle, pulse trains), or

o Simplified model (only 71 varies by individual; other parameters fixed at population values).

Code Availability

All analysis code is available at https://github.com/GilRaitses/indysim in the scripts/2025-12-16/phenotyping_1
directory.

https://github.com/GilRaitses/indysim

